1) \[X(t) = \sum_{l=0}^{+\infty} \frac{e^{-l \pi t}}{l!} + \sum_{l=0}^{+\infty} \frac{e^{-l \pi t}}{l!} = \sum_{l=0}^{+\infty} \frac{e^{-l \pi t}}{l!} \]

\[x(\pi t) = 0.1 \]

\[E_X = \sum_{l=0}^{+\infty} \frac{e^{-l \pi t}}{l!} \]

\[\frac{2 \pi t}{1 - 0.01} \]

2) \[H(t) = \frac{1}{\pi t} \]

\[y(t) = \frac{1}{2} \int_{0}^{\infty} \cos \left(2 \pi ft \right) + H(t) \]

\[\int_{0}^{\infty} \frac{\pi t}{1} \]

\[\frac{2}{16} \]

3) \[\hat{X}(T) = \frac{1}{2 \pi t} \]

\[\hat{X}(T) = \frac{1}{2 \pi t} \]

\[\frac{\pi t}{16} \]

4) \[x(t) = e^{-\frac{t}{\pi t_0}} \]

\[y(t) = e^{-\frac{t}{\pi t_0}} \]

\[z(t) = x(t) y(t) = e^{-\frac{t}{\pi t_0}} \]

\[\frac{1}{2} \cdot e^{-\frac{t}{\pi t_0}} \]

5) \[\frac{\pi t}{16} \]

\[\frac{1}{2} \cdot e^{-\frac{t}{\pi t_0}} \]

\[\frac{6}{T} \]

\[\frac{1}{2} \cdot e^{-\frac{t}{\pi t_0}} \]

\[\frac{6}{T} \]

\[\frac{6}{T} \]

\[\frac{1}{2} \cdot e^{-\frac{t}{\pi t_0}} \]