A Hamming code word is generated by multiplying the data bits by a generator matrix G using \textit{modulo-2 arithmetic}. This multiplication's result is called the code word vector \((c_1,c_2,c_3,\ldots,c_n)\), consisting of the original data bits and the calculated parity bits.

An example of Hamming \((7,4)\) code generator matrix:

\[
G = [I \mid A] = \begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
0 \\
1 \\
0 \\
1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 1 & 0
\end{bmatrix}
= \begin{bmatrix}
0 \\
1 \\
0 \\
1
\end{bmatrix}
\]

\(2^4 = 16\) codewords

Codewords have Hamming distance 3
Hamming Codes

0 0 0 0 0 0 0	0 0 1 1 1 1 0	Minimum weight=3
0 0 0 1 1 1 0	0 0 1 0 1 0 1	weight=4
0 0 1 1 0 1 1	0 1 0 0 0 1 1	
0 1 0 1 1 0 1	0 1 1 0 1 1 0	
0 1 1 0 1 1 0	0 1 1 1 0 0 0	
0 1 1 1 0 0 0	0 1 1 1 0 0 0	
1 0 0 0 1 1 1	1 0 0 0 1 1 1	
1 0 0 1 0 0 1	1 0 1 0 0 1 0	
1 0 1 1 1 0 0	1 0 1 1 1 0 0	
1 1 0 0 1 0 0	1 1 0 0 1 0 0	
1 1 0 1 0 1 0	1 1 0 1 0 1 0	
1 1 1 0 0 0 1	1 1 1 0 0 0 1	
1 1 1 1 1 1 1	1 1 1 1 1 1 1	

16 codewords with 7 bits

Any codeword has a different codeword at Hamming distance 3 (dmin=3)

It is possible to show that dmin is equal to the minimum Hamming weight (i.e., the number of non zero bits) of the codewords

\[d_{\text{min}} = 3 \]
Hamming Codes

Codes have minimum distance \(d_{\min} = 3 \)

They can correct up to \(t=1 \) error by decoding the received bits with the closest codeword (in Hamming distance)

\[
N = 7, \quad t = 1
\]

\[
P_e(\text{block}) = \sum_{k=t+1}^{N} \binom{N}{k} p^{k} (1 - p)^{N-k}
\]
BCH (Bose, Chaudhuri, Hocquenghem) Codes

Binary BCH codes \((n,k)\) have parameters

\[-n=2^m-1\]

\[-n - k \leq mt \text{ with } m \geq 3, t \geq 1\]

\[-d_{\text{min}}=2t+1\]

Example: \(n=255, k=187, t=9 \) (\(m=8\)) define a BCH code mapping 187 bits into 255 bits, with an error correcting capability of 9 bits

• Reed Solomon codes are non binary codes. CD (Sony & Philips, 1980) use a RS\((28,24)\) on GF\((2^8)\), \(t=2\) symbol (byte) correcting code (24·8=192 bits are mapped into 28·8=224 bits). Symbols are then interleaved so that consecutive symbol errors correspond to different codewords (Cross-Interleaved Reed-Solomon Coding, or CIRC)
Binary Simmetric Channel - Capacità di canale

\[p = P[1|0] = P[0|1] \]

\[P[1|0] \triangleq \frac{P[1,0]}{P[0]} \]

\[P_e = p = P[1,0] + P[0,1] = P[1|0]P[0] + P[0|1]P[1] \]

\[C = 1 - H(p) \]

\[H(p) = -p \log_2 p - (1 - p) \log_2 (1 - p) \]

\[\frac{k}{n} < C \rightarrow \text{Trasmissione arbitrariamente affidabile} \]

\[k, n \text{ grandi} \]